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Format

Recap of Gatlinburg Talk...

... only in Reverse...

... Conceptually, not literally.
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Example #1: 1-D Vectors
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Example #2: Undirected Graph
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Big Picture

� What is the largest set of MxN 
Redistributable components?

� How do we allow developers to 
add to this set?

� Generality over Performance
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Other Complicated Tasks in CS

� GUI APIs
� Java-AWT:  must extend “Frame”
� Lots of default behaviors inherited

� Threaded Apps
� Java: class must implement 

Runnable
� Must implement methods so JVM can 

interact with class correctly
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Last few Rhetorical Questions

� Can we employ a similar strategy 
for MxN?

� Corollaries
� If so, which one?
� How?



GKK 8CASC

Tale of two Customers

� Library Developer
� Familiar with 

Component Tech.
� Formal Software 

Training

� Application 
Programmer

� May not be aware 
of using Babel

� May have no 
formal SW training

Developer User
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Zen of Babel

� If its difficult...
... let Babel do it.

� If its impossible for Babel...
... let developer do it.

� If its difficult for user...
... shift burden to Babel or

Developer if at all possible 
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Solution

� Babel provides a MUX in its runtime
� Parallel Distributed Components

MUST IMPLEMENT the  
MxNRedistributable Interface

� All communication & data 
redistribution details hidden from 
user.

except performance, of course!  ;-)
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Ramifications
� User still programs in SPMD model
� User may not selectively exclude 

processes or threads from a 
parallel RMI

� User may not alter communication 
modes (synch v. asynch, etc.)
� Determined by Babel
� Modifiers may be available to 

developer in SIDL... e.g. “oneway” !
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Ramifications (2)

� No MPI communicator connecting 
M to N
� May not know M and N when driver is 

launched
� M = N, M<N, M>N, M=1, N=1, Okay
� Non-rectilinear Data, No Problem
� Owner Computes
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Now Drilling One Level 
Deeper...
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Babel Inserts Code between 
User & Developer
� language interoperability

� COMPLEX*(4)  == complex<float>
� virtual function dispatch

� call foo() on interface, dispatch to 
implementing class

� implement RMI
� remap distributed data

no industry
precedent
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Impls and Stubs and Skels   
� Application: uses components in 

user’s language of choice
� Client Side Stubs: translate from 

application language to C
� Internal Object Representation:  

Always in C
� Server Side Skeletons:  translates 

IOR (in C) to component 
implementation language

� Implementation:  component 
developers choice of language.  
(Can be wrappers to legacy code)
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Impls
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Out of Process Components
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Remote Components

Internet

Line Protocol

Line Protocol

Unmarshaler

Skels

IORs

Impls

Application

Stubs

IORs

Marshaler
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All MxN Components inherit 
one interface
� All Distributed Objects are 

Containers
� They are by nature subdivisible
� If an interface can make any 

container “look like” a 1-D vector

then a MUX is little more than a 
KELP Mover
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MxNRedistributable Interface 
interface Serializable { 

store( in Stream s );
load( in Stream s );

};

interface MxNRedistributable extends Serializable {

int getGlobalSize();
local int getLocalSize();
local array<int,1> getLocal2Global();

split ( in array<int,1> maskVector,
out array<MxNRedistributable,1> pieces);

merge( in array<MxNRedistributable,1> pieces);
};
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We saw something similar 
yesterday
� Kelp uses callbacks for user to define copy, 

serialization, etc.
� I’m using an interface that user must 

implement
� Kelp uses rectilinear regions
� I’m using explicit local-global maps

(for now)
� Kelp has a Mover 

� most of the “guts” of the solution
� that depends on the user callbacks

� I’m calling it a MUX
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MxNRedistributable Interface 
in action
� Last Time

� I started with object creation
� I handled problems as they aroze

� This time
� I’ll just do the MxN stuff
� I’ll gloss over details altogether
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Example #2: Undirected Graph
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pp->minSpanTree( graph );

1 2

0

3 4 5

6

2

3 4 5

6 7 8

9 10

5

6 7 8

9 10

11

orb

orb

graph

MUX

graph

MUX

pp

pp

� MUX queries graph for 
global size (12)

� Graph determines
particular
data layout
(blocked)

0
1
2
3
4
5

6
7
8
9

10
11

require

require

� MUX is 
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implementation is called
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MUX generates communication 
schedules (client & server)
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MUX opens communication pipes
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MUX splits graphs with multiple 
destinations (server-side)
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MUX sends pieces through 
communication pipes (persistance)
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MUX receives graphs through pipes 
& assembles them (client side)
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Summary
� All distributed components are containers 

and subdivisable
� The smallest globally addressable unit is an 

atom
� MxNRedistributable interface reduces general 

component MxN problem to a 1-D array of ints
� MxN problem is a special case of the general 

problem N handles to M instances
� Babel is uniquely positioned to contribute a 

solution to this problem
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Tentative Research Strategy

� Finish 0.5.x line

� add serialization

� add RMI

� Add in technology 
from Fast Track

Sure TrackFast Track
� Java only, no 

Babel
� serialization & 

RMI built-in
� Build MUX 
� Experiment 
� Write Paper
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Closing Remarks

� User calls without regard to data 
distribution

� Developers code assuming data 
distributed appropriately

� Babel does all the redistribution 
between the two
� Requires Developers implementing 

an interface (a.k.a. callbacks)
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Open Questions

� Non-general, Optimized Solutions
� Client-side Caching issues
� Fault Tolerance
� Subcomponent Migration
� Inter vs. Intra component 

communication
� MxN , MxP, or MxPxQxN
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MxPxQxN Problem
Long-Haul Network



GKK 34CASC

MxPxQxN Problem
Long-Haul Network
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The End
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